LogoLogo
WalletsEcosystemStart BuildingJoin the Community
  • Welcome to IoTeX 2.0
    • 💡Why IoTeX
    • 🪙Tokenomics
      • IOTX Utility in IoTeX 2.0
      • IOTX Emission, Deflation, and Re-Staking
    • 📖Whitepaper
    • ⚡Get Started
  • DePIN Infra Modules (DIM)
    • DIMs Overview
    • [IoTeX L1] DePIN Blockchain
      • Core Concepts
        • Consensus Mechanism
        • Voters and Delegates
        • Ethereum Virtual Machine
        • Accounts & Identities
        • Blockchain Actions
        • ERC20 and NFT Tokens
        • Smart Contracts
        • Interoperability
        • Governance
      • The IOTX Token
        • IOTX Token Exchange Support
        • Different Formats of the IOTX Token
        • IOTX Token Contracts
      • Wallets
        • Supported Wallet Apps
          • ioPay Mobile
          • IoTeX Web Wallet
          • OKX Wallet
          • Rabby Wallet
          • Metamask Desktop
          • Ledger Nano S & X
            • Use Ledger with Metamask
            • Use Ledger with Rabby Walet
            • Use Ledger with IoTeX Hub Portal
            • Migrate to the Ethereum Ledger App
          • IoTeX Desktop Wallet
          • 👩‍💻IoTeX HD Derivation Path
        • Buy IOTX Tokens
        • Execute Transactions
          • Transfer IOTX Tokens
          • Transfer ERC20 Tokens
          • Interact with Dapps
          • Explore transactions
        • Migrate Assets to a different wallet
      • Staking & Governance
        • About IoTeX Staking
        • IoTeX Staking Guide
          • Native staking
          • Staking as NFT
        • Join the Governance
          • Marshall DAO
          • Improvement Proposals
      • Exchange Integration
      • 👨‍💻Deploy Dapps on IoTeX
    • [ioID] DePIN Identities
      • ioID Specification
      • Overview of ioID
      • Registering Identities
      • 👩‍💻Integration Guide
        • Register a DePIN Project
        • Bind your Device NFT
        • Reserve Device ioIDs
        • Query Project Status
        • Register a Device
        • ioID Smart contracts quick reference
    • [W3bstream] DePIN Verification
      • Overview of W3bstream
      • Multi-Prover Architecture
      • 👨‍💻Build with W3bstream
        • Get Started
          • Sequencer Options
        • Build the Prover Code
          • Risc Zero
          • Halo2
          • zkWASM
        • Deploy to W3bstream
          • Create the Project File
          • W3bstream Outputs
          • Deploying Projects
          • Interacting with Projects
        • On-chain integration
          • Verify Risc0 Proofs
          • Verify Halo2 Proofs
          • Verify zkWASM profs
        • Sending Messages
      • 👩‍💻Node Operators
        • Configure a ZK Prover Node
        • Register your Node
    • [ioID-SDK] Hardware SDK
      • ioID-SDK Overview
      • Layered Architecture
      • Compatibility
      • Current Development Status
    • [MSP] Modular Security Pool
    • Third-Party DIMs
      • Data Sequencer Infras
      • Data Availability Infras
      • 👨‍💻W3bstream Tasks
  • Ecosystem
    • Assets on IoTeX
      • Mainstream Assets
      • IOTX and Derivatives
      • DePIN Tokens
      • MEME Coins
    • iotube Bridge
    • iotexscan Explorer
    • Ecosystem Apps
      • DePINScan
      • mimo DEX
      • ecosystem.iotex.io
    • "Powered by IoTeX" Devices
      • Pebble Tracker
        • Quick Start
        • Device Registration
        • Online Firmware Update
        • USB Firmware Update
        • Migrating to Pebble v2.0
          • 1.0 Device Registration
        • Tech Specs
        • Network Selection
        • Pebble Configuration
        • Query Pebble Data
        • Troubleshooting
        • Firmware Development
          • Hardware Setup
          • Build the Firmware
          • Flash the firmware
      • SenseCAP Indicator
      • UCam Home Camera
  • Builders
    • IoTeX Developer Portal
    • Dev Chat on Discord
    • Web3 Development
      • RPC Endpoints
      • Set up your Environment
      • Get Testnet IOTX Tokens
      • ioctl CLI
        • Installation
        • Create Accounts
        • Blockchain interaction
          • ioctl command reference
      • Chain Indexing
        • The Graph
        • SubQuery
        • IoTeX Analytics API
      • IoTeXscan API
      • Deterministic Deployment
      • Account Abstraction
        • Components of AA
        • 👩‍💻Creating new Accounts
        • 👨‍💻P256Account Example
      • Blob Transactions (EIP-4844)
      • Multicall3
      • EVM Precompiled Contracts
    • Building DePINs
      • ioID Step by Step Tutorial
        • Integrate ioID in the Device Firmware
        • Integrate ioID in your cloud
      • Decentralized WiFi Connectivity (DeWi)
        • Project Specification
        • The choice of Hardware
        • The Data API Service
        • DePIN Incentives Contract
    • Building DeFi
      • Deploy Tokens
        • Deploy an ERC20 Token
        • Deploy an NFT Token
      • Price Oracles
        • Chainlink Relayer
        • SupraOracles
      • Integrate IoTeX Staking
      • Liquid staking Dapps
    • Launch Dapps on IoTeX
      • Submit Tokens to the IoTeX Ecosystem
      • Submit tokens to the iotube bridge
      • Verify Smart Contracts
      • Audit your Contracts
      • Submit your Dapp to Portals
      • Useful tools
    • Node Operators
      • Fastblocks (Node as a Service)
      • Setup an IoTeX RPC Node
      • Run a Delegate Node
      • Rosetta API
    • Reference Docs
      • ioctl client
        • Accounts
        • HD Wallets
        • Aliases
        • Actions
        • Queries
        • Smart Contracts
        • Staking & Voting
        • Tokens
        • ioID Identities
        • W3bstream
        • Decentralized Identifiers (DID)
        • JWT Auth Tokens
      • Native IoTeX Development
        • IoTeX gRPC API
        • Account Cryptography
        • Address Conversion
        • Create Accounts
        • Estimate Gas Price
        • Make IOTX Transfers
        • Manage ERC20 Tokens
        • Smart Contract Interactions
        • ioPay Desktop
        • DID JWT Tokens
        • Calling any RPC method
      • Embedded Blockchain Clients
        • Arduino IDE
        • Linux Systems
        • PlatformIO
        • Examples
        • Tutorials
  • Participate
    • Crypto's Got Talent (CGT)
      • IoTeX x Polygon DePIN Grant
    • Governance
      • IoTeX Improvement Proposals
      • The Marshall DAO
    • Join the Community
    • Get in Touch
Powered by GitBook
LogoLogo

This documentation portal is currently undergoing updates to align with the IoTeX 2.0 Whitepaper release. Information provided here may be incomplete, or out-of-date. Please use this portal for preliminary reference only, and check out the official IoTeX 2.0 Whitepaper for updated information.

  • .

2025 | IoTeX

On this page

Was this helpful?

Export as PDF
  1. DePIN Infra Modules (DIM)
  2. [ioID-SDK] Hardware SDK

Layered Architecture

PreviousioID-SDK OverviewNextCompatibility

Last updated 5 months ago

Was this helpful?

As illustrated in the figure below, the ioId-SDK adopts a layered design and consists of five layers from top to bottom, namely the DIDComm messaging layer, the identity and credential service layer, the cryptographic service layer, the cryptographic primitive layer, and the root of trust layer. It is worth noting that each layer is composed of multiple components, allowing developers to customize the SDK to meet hardware limitations and application requirements.

The arrows on the right side of the architecture diagram represent two development directions defined by the SDK.

In the future, the SDK will continue to evolve and provide other application components related to Web3 and blockchain domains for developers to use.

The Southern part

The southern part forms the core framework of the entire SDK, which is based on the cryptographic suite developed in compliance with Arm’s Platform Security Architecture (PSA) architecture and aims to provide unified, standardized cryptographic suite application programming interfaces (APIs) for northbound component developers or other application developers. Through highly abstracted driver interfaces, cryptographic suites suitable for various development platforms, and an optimized SDK configuration system, the underlying southern layer not only applies to a wide range of embedded system platforms but also greatly reduces the learning curve for developers using the SDK.

The Northern part

The northern part is composed of self-sovereign identity (SSI) components built upon the core framework mentioned above. The DIDs, VCs and DIDComm messaging represent the three key pillars of SSI, which aim to move control of digital identity from conventional identity providers to individuals and lay down the foundation for people, organizations and things establishing rich digital relationships. DIDs are a new type of globally unique identifier (URI) that enables verifiable, self-sovereign digital identity, whereas VCs are able to attest identity attributes of subjects and the exchange of VCs builds up trust among DID-identified peers. Both DIDs and VCs are the proposed recommendations of the World Wide Web Consortium (W3C). DIDComm, as specified by the Decentralized Identity Foundation (DIF), provides utility for people, organizations and IoT devices interacting with machine-readable messages and creating DIDbased relationships.

DIDComm messages are exchanged between software agents of entities for implementing a variety of security protocols. The modular design methodology allows developers to easily configure the SDK to adapt to their project needs. For instance, developers can build hardware wallets or blockchain embedded clients based on the southbound core framework, and create machine-to-machine (M2M) communications, identity wallets, metaverse applications, etc., based on the northbound SSI components.