LogoLogo
WalletsEcosystemStart BuildingJoin the Community
  • Welcome to IoTeX 2.0
    • 💡Why IoTeX
    • 🪙Tokenomics
      • IOTX Utility in IoTeX 2.0
      • IOTX Emission, Deflation, and Re-Staking
    • 📖Whitepaper
    • ⚡Get Started
  • DePIN Infra Modules (DIM)
    • DIMs Overview
    • [IoTeX L1] DePIN Blockchain
      • Core Concepts
        • Consensus Mechanism
        • Voters and Delegates
        • Ethereum Virtual Machine
        • Accounts & Identities
        • Blockchain Actions
        • ERC20 and NFT Tokens
        • Smart Contracts
        • Interoperability
        • Governance
      • The IOTX Token
        • IOTX Token Exchange Support
        • Different Formats of the IOTX Token
        • IOTX Token Contracts
      • Wallets
        • Supported Wallet Apps
          • ioPay Mobile
          • IoTeX Web Wallet
          • OKX Wallet
          • Rabby Wallet
          • Metamask Desktop
          • Ledger Nano S & X
            • Use Ledger with Metamask
            • Use Ledger with Rabby Walet
            • Use Ledger with IoTeX Hub Portal
            • Migrate to the Ethereum Ledger App
          • IoTeX Desktop Wallet
          • 👩‍💻IoTeX HD Derivation Path
        • Buy IOTX Tokens
        • Execute Transactions
          • Transfer IOTX Tokens
          • Transfer ERC20 Tokens
          • Interact with Dapps
          • Explore transactions
        • Migrate Assets to a different wallet
      • Staking & Governance
        • About IoTeX Staking
        • IoTeX Staking Guide
          • Native staking
          • Staking as NFT
        • Join the Governance
          • Marshall DAO
          • Improvement Proposals
      • Exchange Integration
      • 👨‍💻Deploy Dapps on IoTeX
    • [ioID] DePIN Identities
      • ioID Specification
      • Overview of ioID
      • Registering Identities
      • 👩‍💻Integration Guide
        • Register a DePIN Project
        • Bind your Device NFT
        • Reserve Device ioIDs
        • Query Project Status
        • Register a Device
        • ioID Smart contracts quick reference
    • [W3bstream] DePIN Verification
      • Overview of W3bstream
      • Multi-Prover Architecture
      • 👨‍💻Build with W3bstream
        • Get Started
          • Sequencer Options
        • Build the Prover Code
          • Risc Zero
          • Halo2
          • zkWASM
        • Deploy to W3bstream
          • Create the Project File
          • W3bstream Outputs
          • Deploying Projects
          • Interacting with Projects
        • On-chain integration
          • Verify Risc0 Proofs
          • Verify Halo2 Proofs
          • Verify zkWASM profs
        • Sending Messages
      • 👩‍💻Node Operators
        • Configure a ZK Prover Node
        • Register your Node
    • [ioID-SDK] Hardware SDK
      • ioID-SDK Overview
      • Layered Architecture
      • Compatibility
      • Current Development Status
    • [MSP] Modular Security Pool
    • Third-Party DIMs
      • Data Sequencer Infras
      • Data Availability Infras
      • 👨‍💻W3bstream Tasks
  • Ecosystem
    • Assets on IoTeX
      • Mainstream Assets
      • IOTX and Derivatives
      • DePIN Tokens
      • MEME Coins
    • iotube Bridge
    • iotexscan Explorer
    • Ecosystem Apps
      • DePINScan
      • mimo DEX
      • ecosystem.iotex.io
    • "Powered by IoTeX" Devices
      • Pebble Tracker
        • Quick Start
        • Device Registration
        • Online Firmware Update
        • USB Firmware Update
        • Migrating to Pebble v2.0
          • 1.0 Device Registration
        • Tech Specs
        • Network Selection
        • Pebble Configuration
        • Query Pebble Data
        • Troubleshooting
        • Firmware Development
          • Hardware Setup
          • Build the Firmware
          • Flash the firmware
      • SenseCAP Indicator
      • UCam Home Camera
  • Builders
    • IoTeX Developer Portal
    • Dev Chat on Discord
    • Web3 Development
      • RPC Endpoints
      • Set up your Environment
      • Get Testnet IOTX Tokens
      • ioctl CLI
        • Installation
        • Create Accounts
        • Blockchain interaction
          • ioctl command reference
      • Chain Indexing
        • The Graph
        • SubQuery
        • IoTeX Analytics API
      • IoTeXscan API
      • Deterministic Deployment
      • Account Abstraction
        • Components of AA
        • 👩‍💻Creating new Accounts
        • 👨‍💻P256Account Example
      • Blob Transactions (EIP-4844)
      • Multicall3
      • EVM Precompiled Contracts
    • Building DePINs
      • ioID Step by Step Tutorial
        • Integrate ioID in the Device Firmware
        • Integrate ioID in your cloud
      • Decentralized WiFi Connectivity (DeWi)
        • Project Specification
        • The choice of Hardware
        • The Data API Service
        • DePIN Incentives Contract
    • Building DeFi
      • Deploy Tokens
        • Deploy an ERC20 Token
        • Deploy an NFT Token
      • Price Oracles
        • Chainlink Relayer
        • SupraOracles
      • Integrate IoTeX Staking
      • Liquid staking Dapps
    • Launch Dapps on IoTeX
      • Submit Tokens to the IoTeX Ecosystem
      • Submit tokens to the iotube bridge
      • Verify Smart Contracts
      • Audit your Contracts
      • Submit your Dapp to Portals
      • Useful tools
    • Node Operators
      • Fastblocks (Node as a Service)
      • Setup an IoTeX RPC Node
      • Run a Delegate Node
      • Rosetta API
    • Reference Docs
      • ioctl client
        • Accounts
        • HD Wallets
        • Aliases
        • Actions
        • Queries
        • Smart Contracts
        • Staking & Voting
        • Tokens
        • ioID Identities
        • W3bstream
        • Decentralized Identifiers (DID)
        • JWT Auth Tokens
      • Native IoTeX Development
        • IoTeX gRPC API
        • Account Cryptography
        • Address Conversion
        • Create Accounts
        • Estimate Gas Price
        • Make IOTX Transfers
        • Manage ERC20 Tokens
        • Smart Contract Interactions
        • ioPay Desktop
        • DID JWT Tokens
        • Calling any RPC method
      • Embedded Blockchain Clients
        • Arduino IDE
        • Linux Systems
        • PlatformIO
        • Examples
        • Tutorials
  • Participate
    • Crypto's Got Talent (CGT)
      • IoTeX x Polygon DePIN Grant
    • Governance
      • IoTeX Improvement Proposals
      • The Marshall DAO
    • Join the Community
    • Get in Touch
Powered by GitBook
LogoLogo

This documentation portal is currently undergoing updates to align with the IoTeX 2.0 Whitepaper release. Information provided here may be incomplete, or out-of-date. Please use this portal for preliminary reference only, and check out the official IoTeX 2.0 Whitepaper for updated information.

  • .

2025 | IoTeX

On this page
  • Why is ioID-SDK needed?
  • Heterogeneity of Smart Devices
  • Complexity of Web3 Transition

Was this helpful?

Export as PDF
  1. DePIN Infra Modules (DIM)
  2. [ioID-SDK] Hardware SDK

ioID-SDK Overview

Why is ioID-SDK needed?

Many traditional Web2-based IoT businesses are looking for new opportunities in the Web3 space and the ioID-SDK is dedicatedly built to address the pain points during this transition.

Heterogeneity of Smart Devices

Smart devices used in today's IoT businesses vary in terms of chip architectures (e.g., Arm, MIPS, RISC-V, etc.), operating systems (e.g., RTOS, Linux, Android, etc.), peripherals, etc. An IoT development team often faces two major technical hurdles when they try to join the Web3 evolution: 1) Lack of Web3 development kits that support their hardware platforms; and 2) Adoption of different Web3 development kits for different hardware platforms. The first technical challenge prevents an IoT business from being transformed into a Web3 one, whereas the second technical challenge leads to increased learning time and development costs as well as decreased code resuability for developers. The ioID-SDK tackles these challenges by employing an innovative SDK architecture composed of a core framework (CF) and a platform adaptation layer (PAL). While the core framework consists of stable and platform-independent functionalities such as cryptographic algorithms, communication interfaces, data encoding/decoding, etc., the platform adaptation layer handles platform-specific functionalities and accommodates requirements of different embedded systems and communities. This design methodology enables the ioID-SDK to be easily integrated into various smart devices, thereby greatly reducing the development complexity and learning curve.

Complexity of Web3 Transition

Traditional Web2-based IoT projects are highly centralized and transforming those projects into Web3 ones usually involve significant changes in system architecture and device firmware. Such a lengthy and tedious transformation process has posed a major challenge for Web2-based IoT businesses.The ioID-SDK is able to simplify the changes of existing device firmware by introducing the concept of a standard layer. The standard layer refers to well-known design frameworks, such as embedded operating systems (e.g., FreeRTOS, Zephyr, etc.), POSIX standards, and community-driven code frameworks (e.g., Arduino, Raspberry Pi, ESP32, etc.). The usage of a standard layer can effectively minimize code coupling between the ioID-SDK and original Web2-based IoT project. When the framework provided by the standard layer is used, an IoT developer can easily integrate the ioId-SDK into existing project codebase with only minor code modifications.

To address the pain points that are faced by traditional Web2-based IoT businesses during their Web3 journey, the ioID-SDK is built with a number of salient features.

Previous[ioID-SDK] Hardware SDKNextLayered Architecture

Last updated 5 months ago

Was this helpful?